Categories
Data Mining

Предобработка данных и логистическая регрессия для задачи бинарной классификации

В задании вам будет предложено ознакомиться с основными техниками предобработки данных, а также применить их для обучения модели логистической регрессии. Ответ потребуется загрузить в соответствующую форму в виде 6 текстовых файлов.

Задача: по 38 признакам, связанных с заявкой на грант (область исследований учёных, информация по их академическому бэкграунду, размер гранта, область, в которой он выдаётся) предсказать, будет ли заявка принята. Датасет включает в себя информацию по 6000 заявкам на гранты, которые были поданы в университете Мельбурна в период с 2004 по 2008 год.

iPython notebook and data as CSV

Categories
Data Mining

Finding Classifier parameters on the grid, Sklearn.grid_search

Let’s answer the question: how do the parameters of the model affect its quality? And how can we select the optimal parameters for the task to be solved? We will look at the grid_search module in the sklearn library and learn how to select model parameters from the grid.

Categories
Data Mining

Sklearn, Classification and Regression metrics

in the post will reviewed a number of metrics for evaluating classification and regression models. For that we use the functions we use of the sklearn library. We’ll learn how to generate model data and how to train linear models and evaluate their quality.

The code as an IPython notebook

Categories
Data Mining

Linear models, Sklearn.linear_model, Regression

In this post we’ll show how to build regression linear models using the sklearn.linear.model module.

See also the post on classification linear models using the sklearn.linear.model module.

The code as an IPython notebook

Categories
Data Mining Development

Linear models, Sklearn.linear_model, Classification

In this post we’ll show how to build classification linear models using the sklearn.linear.model module.

The code as an IPython notebook